<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

運用BP人工神經網絡方法構建碳鋼區域土壤腐蝕預測模型

Corrosion rate prediction model of carbon steel in regional soil based on BP artificial neural network

  • 摘要: 通過測量大慶地區區域土壤的理化性質以及碳鋼的短期腐蝕數據,分析土壤傳質過程的邏輯關系,構建了碳鋼短期土壤腐蝕預測模型.通過用該模型在BP人工神經網絡中進行學習、訓練及模擬,并與現場碳鋼埋片腐蝕實驗結果對比,進一步驗證了腐蝕模型的合理性.結果表明:含水量、空氣容量、pH、Cl-含量、SO42-含量和可溶鹽總量六種土壤環境參數為影響區域土壤中碳鋼腐蝕的主要因素;運用基于Matlab平臺的人工神經網絡,通過不斷地積累土壤腐蝕信息,多次訓練后可以建立起穩定性好、泛化能力強的土壤腐蝕預測模型,能較好地預測了大慶地區碳鋼在土壤中的腐蝕速率.

     

    Abstract: A short-term prediction model for soil corrosion of carbon steel in the regional soil environment of Daqing area was established by measuring the physical and chemical properties of soil in this area, the short-term corrosion data of carbon steel and analyzing the logical relationship among mass transfer processes. The reasonableness of the corrosion model was verified by using BP artificial neural network to learn, train, simulate and compare to the corrosion test results of buried carbon steel samples. The results show that water content, air content, pH, Cl- content, SO42- content and total dissolved salts are the six key factors on soil corrosion of carbon steel in the local soil environment. It is indicated that a stable forecasting model with good generalization ability can be built based on BP artificial neural network through Matlab platform software, by continuous accumulation of soil corrosion information and after adequate training. The model predicts the corrosion rates of carbon steel in Daqing soil accurately.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164