<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

鈰對Cr12鐵素體不銹鋼抗高溫氧化性能的影響

Effect of cerium on the high temperature oxidation resistance of Crl2 ferritic stainless steels

  • 摘要: 參照標準HB5258-2000中的增重法對不同鈰含量的Cr12鐵素體不銹鋼的抗高溫氧化性能進行測試,利用掃描電鏡(SEM)、X射線衍射(XRD)技術等實驗手段進行氧化形貌觀察和氧化物物相分析,并對氧化物的生成熱力學進行了計算.實驗結果表明:氧化物的分析結果與熱力學計算結果相吻合.在600℃、700℃及800℃較低溫度時生成的氧化產物為具有尖晶石結構的M3O4型氧化物,具有良好的保護性,鈰的添加可促進這種氧化膜的形成,降低氧化速率;在900℃時生成的氧化產物類型主要為M2O3型,保護性差,晶粒細的含鈰鋼初期氧化速率快,但是鈰可改善氧化膜與基體的黏附性,在氧化后期阻止實驗鋼進一步的劇烈氧化.利用反應元素效應和晶粒尺寸效應可以較好地解釋該氧化動力學機制.

     

    Abstract: Cr12 ferritic stainless steels with different amounts of cerium were obtained, their high temperature oxidation resistance was tested according to the standard HB 5258-2000, oxidation phenomena and products phase analysis were studied by SEM and XRD, and thermodynamic calculations of the formation of oxidation products were carried out. Experimental results show that the oxidation analysis results consist with the thermodynamic calculation ones. The primary oxidation product is M3O4 type spinel oxide at lower temperatures of 600℃, 700℃ and 800℃, which has good protective capability, and this protective film can be accelerated by adding cerium. As the result, the oxidation rate can be decreased at these temperatures. At 900℃, the primary oxidation product is M2O3 type oxide, which has poor protective capability, and cerium-containing steels with refined grain size are oxidized faster at the beginning. Whereas cerium can improve the adherence between oxide and substrate, prevents materials from being further quick oxidized in the later period. The oxidation mechanism was well explained by reactive element effect and grain size effect.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164