<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

Riccati方程的降階與廣義系統的最優預見控制

Reduced order of the Riccati equation and optimal preview control of singular systems

  • 摘要: 研究了一類廣義離散時間線性系統的預見控制問題.首先通過對系統方程,誤差向量和可預見的目標值信號取差分,構造出一個擴大誤差系統,把廣義系統的預見控制問題轉化為一個形式上的普通廣義系統的控制問題.然后利用廣義系統最優控制理論的結果,得到廣義系統的帶有預見前饋補償的控制器.同時通過詳細推導,把一個階數很高的矩陣Riccati方程降為一個階數很低的Riccati方程,從而使閉環系統可以實現.

     

    Abstract: A preview control problem of a generalized discrete-time linear system was studied. First an extending error system was constructed by applying the difference method to the system equation, the error vector and the objective value signal. This converts the problem from a preview control problem of an extending system to a common control problem in analysis. Then, using the result of the optimal control theory of the generalized system, a controller with preview action of the generalized system was got. Also, a matrix Riccati equation was converted by decreasing its rank, which enables the closed-circular system.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164