<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

TiO2的晶型對其可見光催化性能的影響

Effect of crystalline structure on TiO_2 photocatalysis under visible light irradiation

  • 摘要: 以銳鈦礦、金紅石及混晶TiO2作光催化劑,以活性艷紅X-3B及苯酚作模型污染物,研究了TiO2的晶型對其可見光催化性能的影響.結果表明:在Vis/O2條件下,以銳鈦礦或混晶TiO2作光催化劑,反應80 min對活性艷紅X-3B的降解率近100%,金紅石型TiO2的則不到15%;在Vis/H2O2條件下,三種光催化劑均能降解苯酚,且金紅石型TiO2顯示更高的催化活性,反應180 min對苯酚的降解率達54%.通過對反應體系的熒光光譜分析顯示,反應過程涉及·OH自由基的產生和參與;在TiO2可見光催化反應過程中,由銳鈦礦型TiO2經一系列復雜反應產生H2O2,生成的H2O2在TiO2表面形成活性位吸附,從而拓寬TiO2的光吸收范圍至可見光區,再在可見光激發下產生·OH自由基等活性物種而對污染物起降解作用.

     

    Abstract: The effects of crystalline structure, anatase, rutile and mixing crystal, on the visible-light photocatalytic performance of TiO2 were studied with reactive red X-3B and phenol as model pollutants. The results showed that the degradation ratio of reactive red X-3B after 80 min reaction could be as high as 100% when using anatase or mixing crystal TiO2 as photocatalyst under the condition of Vis/O2, but the degradation ratio was less than 15% when using rutile TiO2 as photocatalyst. Phenol could be degraded under the condition of Vis/TiO2 by any of the three photocatalysts; rutile form exhibited a better photocatalytic activity, and its degradation ratio could be 54% after 180 min reaction. Fluorescence spectrum analysis indicates that the reaction process is predominated by the generation of ·OH radicals in the system. In the process of TiO2 visible-light photocatalysis, hydrogen peroxide is generated by anatase TiO2 from a series of complex reactions, and the generated hydrogen peroxide is absorbed on the surface of TiO2 to form active species, which is responsible for the generation of ·OH radicals and the degradation of organic pollutants under visible light irradiation.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164