<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

變形量及N含量對油井管用中碳V-Ti-N微合金鋼顯微組織的影響

Influence of deformation and N content on the microstructure of medium-carbon V-Ti-N microalloyed steels for oil-well tubes

  • 摘要: 采用Gleeble-1500熱模擬試驗機,研究了某油井管生產工藝中張力減徑過程變形量以及C和N含量對中碳V-Ti-N微合金非調質鋼室溫組織的影響.結果表明:HCLN鋼在800℃變形量為20%、40%和60%時,對應的室溫組織中鐵素體的體積分數依次為17.2%、19.7%和29.9%.N質量分數為2.3×10-4時,800℃變形60%后控冷鋼中鐵素體的體積分數為含低N(1.1×10-4)鋼的1.7倍左右,使含C 0.34%的鋼中鐵素體含量接近于含C 0.26%的鋼,并使鐵素體平均晶粒尺寸降低到3μm左右.變形量和鋼中N含量二者增大均有利于增加鋼中鐵素體的數量,且二者綜合運用的效果更有效.通過分析可知,800℃變形量的增大,可以提高未再結晶奧氏體晶粒內的缺陷密度,有利于過冷奧氏體連續冷卻轉變時為晶內鐵素體形核提供更多的形核位置.N含量的增大,能夠促進第二相析出物的析出,誘導晶內鐵素體的析出,提高鐵素體含量,并細化其晶粒尺寸.

     

    Abstract: The influence of deformation during stretch reducing, C and N contents on the microstructure of medium-carbon V-Ti-N microalloyed steels for oil-well tubes was investigated with a Gleeble-1500 simulator. The results show that the volume fractions of ferrite in HCLN steel with deformations of 20%, 40% and 60% at 800℃ are 17.2%, 19.7% and 29.9%, respectively. The amount of ferrite in HCHN steel with an N content of 2.3 × 10-4 is almost equal to that in LCLN steel with a C content of 0.26%, and 1.7 times that in HCLN steel with an N content of 1.1 × 10-4. However, the size of ferrite grains in HCHN steel is about 3μm, the smallest among the experimental steels. It is obvious that increasing deformation and N content is beneficial to the amount of ferrite, and it is more effective that deformation and N are used simultaneously. According to analyses, when the degree of deformation enlarges, defects in non-recrystallized austenite grains increase, which is helpful to provide plenty of nucleation sites for intragranular ferrite. While increasing the content of N to 2.3 ×10-4, second-phase precipitation is promoted, the amount of ferrite increases, and ferrite grains are refined simultaneously.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164