<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

Cu基亞穩難混溶合金液-液相變

Kinetics of liquid-liquid phase transformation in Cu-based alloys with a metastable miscibility gap

  • 摘要: 通過氣體霧化技術研究了Cu100-XFeX(X=15,20,30和40)合金的凝固行為.考慮少量相液滴形核、擴散長大、空間遷移、凝固界面與液滴間的相互作用以及體積分數等共同影響因素,建立了能描述該類合金凝固組織演變動力學模型.將數學模型與霧化液滴飛行過程中運動、傳熱和傳質的控制方程相耦合,給出了數值求解方法,模擬計算了Cu基亞穩難混溶合金液-液相分離過程.結果表明:富Fe粒子的平均尺寸隨著Fe含量的增加而增大;少量相液滴形核發生在基體熔體過飽和度峰值附近;隨著冷卻速度的增大,霧化液滴中少量相液滴的形核率增大,但平均半徑減小;少量相液滴在Marangoni遷移和與固/液界面相互排斥共同作用下,向霧化液滴中心遷移,使霧化粉末最終形成殼型組織結構.

     

    Abstract: The solidification behavior of Cu100-XFeX(X=15, 20, 30 and 40) alloys was investigated by gas atomization. Considering the common action of minority phase spheres' nucleation, diffusion growth, spatial movement and interaction between solidification interface and minority phase spheres, a model was developed to describe the kinetics of metastable liquid-liquid phase transformation and microstructure evolution in the metastable immiscible alloys with different volume fractions of minority phase spheres. Coupled with the movement, thermal and mass transfers during the atomized droplet flight, the numerical model was resolved. The kinetics of metastable liquid-liquid phase transformation in Cu-based immiscible alloys was investigated by numerical simulation. The results indicate that the average size of Fe-rich spheres increases with the increase of Fe concentration. The nucleation event takes place around the peak of matrix liquid supersaturation. With the increase of cooling rate, the nucleation undercooling and the nucleation rate increase, but the average radius of Fe-rich spheres decreases. The formation of Fe-poor layer on the large powder surface is the result of the common actions of the Fe-rich spheres' Marangoni migration and repulsive interaction between the solid/liquid interface and Fe-rich spheres.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164