<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

Weibull尺寸分布晶粒組織演變的仿真研究

Simulation of evolution from an initial grain structure with Weibull grain size distribution

  • 摘要: 采用一種改進的Potts模型Monte Carlo算法,對具有Weibull尺寸分布(參數β=3.47)的晶粒組織進行了3D正常晶粒長大過程的仿真研究.仿真結果表明:整個晶粒長大過程遵循拋物線長大規律,晶粒生長指數為0.501,非常接近理論值0.5.晶粒長大過程可分為過渡階段與準穩態長大兩個階段.Weibull尺寸分布參數β由過渡階段的3.47逐漸演變為準穩態階段的2.76,準穩態階段晶粒尺寸分布參數保持β=2.76不變.晶粒的平均面數〈f〉隨仿真時間的增加而增大,在準穩態階段后期趨近于穩定數值.晶粒面數分布為Lognormal分布,最高頻率面數f為10,個體晶粒面數范圍為3~43.

     

    Abstract: Monte Carlo simulations with Potts model were performed to investigate the process of normal grain growth starting from an initial microstructure, the grain size distributions of which could be well described by the Weibull function with a parameter β=3.47. The result show that a parabolic law is observed in grain growth and the simulation time exponent of grain growth n=0.501, which is very close to the theoretical value for grain growth n=0.5, is attained. The complete process of normal grain growth simulation includes transition period and steady state period. In transition period, the grain size distribution is changed rapidly from the Weibull distribution with β=3.47 to the Weibull distribution with β=2.76. In steady state period, the grain size distribution maintains the Weibull distribution with β=2.76. The mean grain face number <f> increases with the increase of time and in the late steady state period <f> approaches soine steady value. The Lognormal function fits the grain face number distribution well and the scope of the individual grain face number is 3-43.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164