<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

初始組織形態對中碳鋼溫變形組織演變的影響

Effect of initial microstructure on the microstructure evolution of medium carbon steel during warm deformation

  • 摘要: 中碳鋼溫變形過程的組織演變包含鐵素體動態回復、再結晶和滲碳體的析出球化等過程.采用Gleeble1500熱模擬試驗機研究了初始組織形態對含碳0.48%(質量分數)的中碳鋼在溫變形中上述復雜過程的影響.結果表明:初始組織為珠光體+先共析鐵素體的試樣在溫加工變形中滲碳體層片發生了扭折、溶斷到逐漸球化的過程,在鐵素體回復再結晶的同時伴隨著細小彌散的滲碳體顆粒從過飽和鐵素體中析出,得到微米級鐵素體晶粒和顆粒狀滲碳體彌散分布的復相組織,但等軸狀鐵素體晶粒與彌散的滲碳體顆粒沿變形方向呈帶狀不均勻分布.溫加工變形促進初始組織為馬氏體的中碳鋼中滲碳體析出和鐵素體回復與再結晶.由于初始條件下碳的分布在微觀尺度下相對均勻,變形后獲得細小等軸鐵素體與均勻分布顆粒狀滲碳體的組織.

     

    Abstract: The microstructure evolution of medium carbon steel during warm deformation includes dynamic recovery and recrystallization of ferrite, precipitation and spheroidization of cementite. The effect of initial microstructure on the microstructure evolution of a medium carbon steel (0.48% C in mass fraction) during warm deformation was investigated by hot uniaxial compression tests. The results indicate that the lamellar structure of pearlite in the initial microstructure of pearlite + ferrite is kinked, dissolved and spheroidized during warm deformation, with dynamic recovery and dynamic recrystallization of ferrite, the carbides precipitate from supersaturated ferrite, and then the duplex microstructure consisting of sub-micrometer ferrite grains and cementite particles is obtained, while the heterogeneous and zonal distribution of cementite particles and ferrite grains appear along the deformation direction. When the initial microstructure is martensite, the decomposition of martensite and the recovery and recrystallization of ferrite are enhanced by warm deformation. Because of the uniform distribution of carbon in the matrix, the fine equiaxed ferrite grains and homogeneously distributed cementite particles are formed.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164