<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

Cu-Ag合金中析出相界面結構及其對合金性能的影響

Interface structure between Ag precipitates and Cu matrix and its effect on the properties of the Cu-Ag alloy

  • 摘要: 采用真空感應熔煉法制備Cu-6%Ag和Cu-24%Ag,并進行退火和時效處理,觀察了合金中析出相與基體的位向關系及界面結構,分析了析出相對合金強化和導電特性的影響.析出相與Cu基體之間具有(100)Cu//(100)Ag及〈110〉Cu//〈110〉Ag位向關系,存在半共格界面,在(111)面上平均每隔9個晶面間距出現一個刃型位錯以協調點陣錯配.析出相與Cu基體這種特定的位向關系及界面結構能有效地阻礙基體中位錯的運動,在產生析出相強化作用的同時幾乎不影響合金的電傳導行為.隨Cu-6%Ag時效時間的延長,析出相數量增多,合金硬度顯著上升而電阻率持續下降.時效過程中析出相數量、形態及界面結構是導致合金力學和電學性能變化的主要原因.

     

    Abstract: The Cu-6% Ag and Cu-24% Ag were cast and annealed or aging treated to precipitate Ag secondary particles from supersaturated Cu matrix. The interface and orientation relationship between Ag precipitates and Cu matrix were investigated. The effect of Ag precipitates on the mechanical and electrical properties of the alloys was discussed. There are a strict orientation relationship, (100)Cu//(100)Ag and <110>Cu//<110>Ag, and semi-coherence interface between Ag precipitates and Cu matrix. One dislocation exists in average nine (111)Cu lattice intervals to adjust the lattice misfit at the interface. The strict orientation relationship and semi-coherence interface may produce significant strengthening affect and hardly increase the electron scattering in the alloys. With prolonging aging time the amount of Ag precipitates and the hardness of the alloys increase but the electrical resistivity decreases. The changes of the amount, morphology and interface structure of the precipitates should be responsible for the change of the properties during aging treatment.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164