<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

B4C改性酚醛樹脂對Si3N4的高溫粘接性能

Adhesive properties of B4C-modified phenol-formaldehyde(PF)resin adhesive for the high-temperature bonding of Si3N4

  • 摘要: 以酚醛樹脂為基體,加入B4C作為改性填料制備出高溫粘結劑,并對Si3N4陶瓷進行粘接。在300~800℃溫度范圍內對Si3N4陶瓷粘接試樣進行熱處理,并測試了不同溫度熱處理后的室溫剪切強度。結果表明,經過700~800℃熱處理后,粘結劑表現出較為理想的粘接性能,剪切強度測試結果為Si3N4陶瓷基體破壞。利用掃描電鏡研究了粘接試樣的斷面形貌及膠層結構特征。研究表明,在高溫熱處理過程中,B4C改性填料發生了復雜的物理、化學變化,通過B4C與樹脂揮發分之間的改性反應,有效提高了酚醛樹脂熱解后的殘炭值,進而改善了粘接膠層結構的高溫穩定性;纖維狀物質的形成與B2O3顆粒的細化,有助于提高粘接膠層的連接強度。

     

    Abstract: High-temperature adhesive was prepared using phenol-formaldehyde resin (PF) as matrix and boron carbide (B4C) as modifier, silicon nitride (Si3N4) ceramics were bonded by the adhesive, and the bonded specimens were heat-treated within 300-800℃ subsequently. The adhesive properties of the high-temperature adhesive were tested. The results indicate that the adhesive has outstanding high-temperature bonding properties for Si3N4 at high temperature. The failure of bonded joints treated at 700 and 800℃ were due to the broken of Si3N4 matrix. The micro-morphologies at bonding interfaces were also investigated by SEM. It is shown that complex physical and chemical changes occurred during the heat-treatment process. By means of the modification reaction between B4C and the volatiles of PF resin, the value of carbon residue was prompted effectively; and the formation of fibers and the nanocrystallization of B2O3 benefit the achievement of satisfactory high-temperature bonding properties.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164