<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于離散混沌系統廣義同步定理的數字圖像加密方案

An image encryption scheme based on generalized synchronization theorem for discrete chaos system

  • 摘要: 在建立的離散混沌系統廣義同步定理的基礎上構造了一個廣義混沌同步的離散系統,并結合Henon混沌映射設計了一個數字圖像加密方案,能夠對灰度圖像成功加密并且實現了無失真解密.對該加密方案的密鑰空間、密鑰參數敏感性分析表明,該加密方案具有較高的安全性.數值仿真實驗證明:該加密方案對混沌系統的參數及初始條件擾動極為敏感,任何大于10-15的擾動將使解密失效;該加密方案具有1076的密鑰空間,能夠有效地應用于網絡通訊.

     

    Abstract: A constructive theorem of generalized synchronization for discrete chaos systems is established. Based on the theorem, a generalized chaotic synchronization discrete system was constructed. Combining this system with the Henon chaotic mapping designs a digital image encryption scheme, which can successfully encrypt and decrypt gray-scale images without any lost. The scheme is sensitive to perturbations of the parameters and initial conditions of the chaos system. Any perturbations which are larger than 10-15 will make corresponding decryptions become impossible. The key space of the scheme is as large as 1076. The analysis of key space and key parameter sensitivity shows that the scheme has sound security. Numerical simulations reveal that the scheme is effective in network communication.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164