<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

液氮球磨制備Al-Zn-Mg-Cu納米晶粉末及組織分析

Synthesis and microstructure of nanocrystalline Al-Zn-Mg-Cu alloy powders by cryomilling

  • 摘要: 利用液氮球磨技術制備了Al-Zn-Mg-Cu納米合金粉末.采用X射線衍射對材料在球磨過程中的固態相變、晶粒尺寸和微觀應變進行了研究,利用金相顯微鏡和透射電鏡觀察了微觀組織.研究表明,隨著球磨的進行,霧化粉末中的MgZn2第二相逐步減少,并最終完全超飽和固溶于α-Al之中.低速(200r·min-1)球磨10h后仍有少部分粗晶存在于粉末心部;高速(400r·min-1)球磨能夠使粉末納米晶粒更加均勻.材料經過低速液氮球磨6h以后平均晶粒大小穩定在45nm,并保持到10h不再變化;增加主軸轉速到400r·min-1繼續球磨5h后,粉末平均晶粒大小降到34nm.微觀應變隨著球磨進行呈現先增大后降低的趨勢.

     

    Abstract: A nanocrystalline Al-Zn-Mg-Cu alloy was synthesized by mechanically milling at cryogenic temperature (cryomilling). The effect of cryomilling process on the microsturcture, phase transformation in solid, grain size and microstrain of this alloy was investigated by X-ray diffraction (XRD), optical microscopy (OM) and transmission electron microscopy (TEM). During the cryomilling, the second phase MgZn2 was gradually disappeared and ultimately super-saturated to α-A1. With increasing milling time, the grain size of the alloy decreased sharply. Howerver there were still a few coase grains in the core of powders after low-speed (200 r·min-1) cryomilling for 10 h. Contrastively, high speed (400 r·min-1) cryomilling could result in more uniform nanometer grains. According to the XRD results, the average grain size was 45 nm after low speed cryomilling for 6 h and kept stable until 10 h, but the average grain size reduced to 34 nm after farther high speed cryomilling for 5 h. The microstrain increased gradually to a maximum, and then fell off along the milling processing.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164