<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于小波的帶Hilbert核的奇異積分方程的解法

Solution for the singular integral equation with Hilbert Kernel based on wavelet

  • 摘要: 許多力學和工程問題都可以表示為第一類奇異積分方程.本文給出了帶Hilbert核的奇異積分方程的小波Galerkin算法.利用L2(0,1)上的周期小波和Hilbert核的特點降低剛性矩陣的維數;并且通過閾值使得矩陣更加稀疏,以減少計算量和節省存儲空間.根據Hilbert核的奇異性,通過Tikhonov正則化方法求解了所得到的剛性方程組,給出了算法的收斂性和數值結果.

     

    Abstract: Many problems arising in mechanics and technology can be formulated as the first kind of singular integral equation. A Wavelet-Galerkin algorithm for solving the first kind of singular integral equation with Hilbert kernel was presented. In the algorithm the characteristic of periodic wavelet on L2(0,1) and the Hilbert kernel were used to solve and make the stiff matrix lower dimension and become sparser through threshold. The computational amount was decreased and the memory space was saved. Because of the singularity of Hilbert kernel the Tikhonov regularization method was used to solve the stiff equation system. The convergence and the numerical result of approximate solution are discussed.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164