<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于人工免疫的RBF神經網絡在鋼筋性能預報中的應用

Application of RBF network based on artificial immune algorithm to predicting mechanical property of steel bars

  • 摘要: 提出了一種基于免疫識別原理的徑向基函數神經網絡學習算法.該算法利用人工免疫系統的識別、記憶、學習等原理,將輸入數據作為抗原,抗體為抗原的壓縮映射作為徑向基函數神經網絡模型的隱層中心,輸出采用最小二乘法確定權值.通過預報熱軋帶肋鋼筋力學性能的仿真實驗結果表明,與K-均值法選擇中心點比較,該算法計算量較小,精度高.

     

    Abstract: A Radial Basis Function (RBF) neural network learning algorithm based on immune recognition principle is proposed. In the algorithm, the input data are regarded as antigens and the compression mappings of antigens as antibodies, i.e., the hidden layer centers. This algorithm can choose the number and location of the hidden layer centers by applying the principles of recognition, memory and learning, and can determine the weights of the output layer by adopting the least square algorithm. The predicted results of the mechanical property of hot-rolled steel bars show that this algorithm has the advantages of less computation and high precision compared to the K-means algorithm.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164