<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

鎢合金力學行為的計算機數值模擬─—宏觀力學性能

Computer Numerical Simulation of Mechanical Behavior of Tungsten Heavy Alloys-Macro-mechanical Properties

  • 摘要: 在微觀力學行為分析的基礎上,對90W合金宏觀力學性能及其與微觀結構因素(粘結相力學參數)之間的關系進行了計算機數值模擬研究.結果表明:鎢合金性能與粘結相力學參數密切相關.隨著粘結相彈性模量增加,合金的抗拉強度增加,但延伸率降低.當粘結相屈服強度800MPa時,合金抗拉強度隨粘結相屈服強度增加而增大,在粘結相屈服度為800MPa時達到最大值.隨粘結相抗拉強度增加,合金抗拉強度和延伸率均呈近似線性規律增加.合金延伸率對粘結相應變硬化模量極為敏感.

     

    Abstract: On the basis of analyzing the micro-mechanical behavior, the macro-mechanical properties of 90 W heavy alloy and the effects of microstructural parameters(mechanical properties of matrix phase) on them have been calculated by computer numerical simulation. The mechanical properties of the alloy have been found to depend heavily on mechanical parameters of matrix phase. As the elastic modulus of matrix phase increases, the tensile strength of the alloy increases, while its elongation decreases. The tensile strength of the alloy has a maximum at the yield strength of matrix phase 800 MPa. When the yield strength of matrix phase<800 MPa, the tensile strength of the alloy increases with its increase, however, a opposite variation occurs when the yield strength of matrix phase> 800 MPa if the mechanical parameters except tensile strength of matrix phase are constant, both the tensile strength and the elongation of the alloy increase linearly with the increase of tensile strength of matrix phase, because the ductility of matrix phase increases with its tensile strength in this case. The elongation of the alloy is very sensitive to hardening modulus of matrix phase. As the hardening modulus increases the elongation of the alloy exponentially decreases.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164