<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

從基本割集矩陣綜合有向圖的分解法

The Decomposition Method for Synthesizing Directed Graphs from Fundmental Cutset Matrices

  • 摘要: 引入了有向基本割集矩陣Qf的二分解和分解樹的概念,導出了Qf可實現的充分必要條件和所實現圖G在有向二同構意義上的唯一性,應用超圖理論解決了如何求Qf的二分解問題,提出了用分解法直接實現Qf的原理和算法.該原理可計算復雜度為O(v2l2)、vlQf的樹路子陣Qfp的行數和列數.

     

    Abstract: The concepts of the 2-decomposition and decomposition tree of a directed fundamental cutset matrix Qf are introduced. The necessary and sufficient conditions for realizibility of Qf and the uniqueness of realized graph G in directed 2-isomorphic sense are deduced.The problem, how to find a 2-decomposition of Qf, is solved by hypergraph theory. The principle and algorithm for directly realzing Qf by decomposition method are presented. The principle is intuitive. Its computational complexity is O(v2l2), where v and l are the numbers of rows and columns of the tree-path submatrix Qfp of Qf, respectively.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164