<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

相界面與馬氏體轉變理論

Phase Interface and Martensitic Transformation

  • 摘要: 試圖把馬氏體轉變的晶體學唯象理論與動力學唯象理論聯系起來,建立一個以相界面推移為核心的馬氏體轉變理論。此界面的本質可表示為一特征張量,即馬氏體轉變的平面不變應變張量。把界面看作彈塑性薄層,則特征張量作為應變所對應的彈塑性能(功),即為界面推移的摩擦函數中的準焓;此界面(不變面)一般不是有理面,應由低指數小晶面曲折構成,構成方式的數量的總和,組成摩擦函數的準熵。因此,界面的推移,將表現出馬氏體轉變中已知的動力學行為(可逆性、熱滯等)。

     

    Abstract: This paper unifies the phenomenological theory of crystallography and that of kinetics, and builds a new theory based on the phase interface motion for the martensitic transformations. The interface can be described with a characteristic tensor, which is the invariant plane strain. Thus, the motion of this interface will transform the parent phase to martensite,conforming to all regulations of the crystallography such as habit plane, orientation, etc. On the other hand, the interface can be taken as an elastic and plastic layer. The characteristic tensor, functioning as strain, corresponds to certain elastic and plastic energy (work), which is exactly the friction quasi-enthalpy in the friction function during the interface moving. The interface, i.e. the invariant plane, usually is not a rational plane and is consisted of various low index facets. The number of the configuration of the facets consists the configuration entropy of the interface, which is exactly the friction quasi-entropy in the friction function. Thus, the motion of the interface will show all the kinetic behaviors such as reversibility and hysteresis during the marten-sitic transformations.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164