<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

和諧性質及其應用Ⅱ

Consistency Property and Its Application Ⅱ

  • 摘要: Kim B.Bruce于1978年提出了三價邏輯L(Q)的邏輯公理系統。H.J.Keisler在1971年發表了無窮邏輯中的模型論一書,提出了無窮邏輯的公理系統,文中結合上述兩種邏輯系統的思想,應用了無窮邏輯中的模型論一書中介紹的和諧性質的方法,建立了無窮邏輯中的二階語言Lw1w(Q)的公理系統及模型理論。這部分主要是對Lw1w(Q)中的省略型定理及素模型定理的證明。

     

    Abstract: Kim B.Bruce gave a system of axioms for second order logic L(Q).H.J.Keisler in 1977 published a book called 《Model Theory for Infinitary Logic》 to give a system of axioms for infinitary logic. This article combines the two ideas of the two systems of axioms, applying the consistency property introduced by the book 《Model Theory for Infinitary Logic》 to give a system of axioms and model theory for infinitary second order logic Lw1w(Q). This part of the article is mainly the proofs of omitting type theorem for Lw1w(Q) and prime model theorem for Lw1w(Q).

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164