<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

硼在奧氏體晶界的兩種偏聚形式

Two Kinds of Boron Segregation at Austenite Grain Boundaries

  • 摘要: 用PTA方法研究了Fe-30%Ni合金中硼在晶界的偏聚行為。實驗表明在550-1200℃保溫后用不同方式冷卻的試樣中存在平衡與非平衡兩類硼偏聚,它們各自的形成機制不同,試驗條件對它們的影響不同。平衡偏聚在保溫時形成,在低溫區淬火時起主要作用。在高溫加熱后,用通常冷卻速度淬火時,晶界偏聚主要來源于冷卻過程中產生的非平衡偏聚,實際瘁火試樣中觀察到的硼偏聚是這兩類偏聚的疊加。試驗指出,Fe-30%Ni合金中偏聚方式有一個轉折溫度區,這溫度受冷卻速度影響,在通常冷卻速度下,這個轉折溫度在650~750℃之間。

     

    Abstract: It has been considered that the boron segregation at austenite grain boundaries is responsible for the effect of boron addition on the properties of the steel, such as hardenability, creep fracture, etc.By means of particle tracking autoradiograph (PTA) the grain boundary segregation of boron has been investigated in Fe-30% Ni alloys, quenched from 550-1200℃ at different cooling rates.It is shown that two kinds of grain boundary segregation, equilibrium and aonequilibrium segregation, caused by different mechanisms take place.The nonequilibrium grain boundary segregation during cooling with boron depleted zone adjacent to the grain boundary is very sensitive to e cooling rate, and can be inhibited by rapid quenching.
    The temperature effects on these two kinds of grain boundary segregation are different.As the quenching temperature increases, the grain boundary segregation of boron due to equilibrium adsorption decreases, while the non-equilibrium segregation brought to the grain boundaries kinetically increases. The nonequilibrium segregation therefore dominates in the specimens quenched from high temperatures, and the equilibrium segregation dominates in those cooled from low temperatures. For the cooling used in the work described above, the transition temperature for the dominance of cither segregation in the alloys lies in the range of 650-750℃9 increasing with increasing cooling rate.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164