<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

塑性理論變分原理及其有限元公式

Variational Principles in Plasticity and Thier Finite Element Formulas

  • 摘要: 本文提出了流動理論中粘塑性、剛塑性材料和形變理論中彈塑性材料的廣義變分原理;推導出相應的有限元公式;證明了在一定條件下,以不同的本構關系為基礎的變分原理可以寫成統一的形式。

     

    Abstract: In this paper, we first prove the elastic/viscoplastic variational principle and regard the rigid/viscoplastic, elastic-plastic and rigid-plastic va-riational principle as its special case, then derive the finite element formulas.
    The constitutive equations of elastic/viscoplastic material are eq. (2-14), (2-16).
    Suppose the strain-hardening function of material is H=H(\mathop \varepsilon \limits^\rm\cdot VP, \mathop \varepsilon \limits^\rm\cdot ) then have eq. (2-17).
    Usually, d \mathop \varepsilon \limits^\rm\cdot is rather small, we can obtain eq. (2-18).Finally, we have eq. (2-22).
    The elastic/viscoplastic variational principle says:Among all the possi-ble vi, \mathop \varepsilon \limits^\rm\cdot ij, the actual solution renders the functional (2-23) a stationary value.
    From dynamic tests at different strain rate, eq. (2-27) is obtained by regression. Work rate functions are eq. (2-28) and (2-29).
    The rigid/viscoplastic conventional variational principle is that among all the possible vi, \mathop \varepsilon \limits^\rm\cdot ij, the actual solution renders the functional (2-23) a stationary value.
    According to the Fig. 3-1, we suppose the stress-strain relations for complicated stress state are eq. (3-5).The work rate functions are eq. (3 -6) and (3-7).The variational principle concerning non-plastic region and unloadingproblems can be discribed as follow:among all the vi, εij, the actual solu-ion renders the functional (2-23) a stationary value.
    Nadai's constitutive equation (4-4) can be extended to elastic-plastic deformation case. We futher define eq. (4-5), and let eq. (4-7), then we obtain eq. (4-8).
    Under the condition of εij<1,wwe obtain eq.(4-9).Since the constitutive equation (4-8) is a homogeneous function of time, the functional (2-23) can be rewritten as eq. (4-10).
    The variational principle of Nadai's deformation theory says. Among all the ui,εij,the actual solution renders the functional (4-10) a stationary value.
    According to the experimental results, a variational principle based on the general functional (2-23) is proved on the some proper handling of the constitutive equations for different materials. Some other variational principle which mentioned above and in our other papers can be regarded as special cases of the variational principle discussed here.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164