<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

一類多變量自校正控制器及其收斂性的研究

A Class of Multivariable Self-Tuning Controller and Its Convergence Analysis

  • 摘要: 本文結合極點配置的基本設計思想,提出了一類具有輸出跟蹤的多變量自校正控制算法。該算法將工程應用中提出的要求與系統的性能指標聯系起來,實現了閉環極點配置的廣義最小方差控制,而性能指標中加權多項式矩陣R(z-1)的選取是根據使閉環系統輸出對參考信號實現穩態無偏跟蹤的原則進行的。進而運用Martingle收斂理論對算法進行了研究,導出了控制器的無偏收斂條件。數字仿真研究表明了該算法的可行性和有效性。

     

    Abstract: This Paper discusses a class of multivarable self-tuning controller with generalized cost-function. Relating to the demands of the engineering application with the cost-function, a generlized minimum-variance control strategy with prespecified closed-loop pole assignment is developed. Meanwhile the polynomial matrix R(Z-1) in the cost-function is so determined as to elimineting the steady state output tracking error of the system. when the parameters of the system are unknown, the parameters of the controller may be estimated directly by using a muitivariable recursive least squares method. The convergent property of the proposed approach is given by using the Martingale convergence theory and the convergence conditions are also given .Simulation results show that the feasibility and the effectiveness of the proposed algorithm.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164