<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

底吹氣體攪拌下熔池內流場的研究

The Modeling of Velocity fields in bottom blown argon stirred bath

  • 摘要: 本文將物理模型實驗與數學模型數值求解相配合,對底吹氣體攬拌下熔池內流場進行了研究。以湍流運動學方程和動力學方程、Harlow—Nakayama湍流k—ε雙方程模型1及邊界條件構成了所研究問題的數學模型,應用Spalding等計算湍流回流的方法2,對數學模型數值求解,得到熔池流場渦量,流函數、湍動能、湍動能耗散率、湍流旋渦粘性系數、速度、含氣率及密度等的分布,計算與測定了三種工況,計算與實驗結果吻合。

     

    Abstract: In this work, the gas-liquid two phase fluid flow and the recirculating flow field in the bottom blown argon stirred bath are studied by means of experiments carried with physical model together with numerical solutions of the mathematical model. The mathematical model consists of the turbulent flow mean vorticity transport equation and stream function equation. K-ε turb-ulance two equation model, the pure buoyance madel and the boundary conditions, The mathematical model is numerically solved implicitly using methed for solving recirculating flow problems developed by prof, Spalding, so that the flow pattern and dislributions of velocity,turbulence kinetic energy, turbulence kinetrc energy dissipation rate, vorticity, the turbulence viscosity, the density and the gas void fraction ratio are obtained. Velocity distribution computed agree well with those measured by laser Doppler anemometer, the computed flow patterns together with the position of the centre of the recirculation flows are in agreement with those obtained by photograpies taking from flow visualization. It shows that, the mathematical model together with its method of solution used arc acceptable for predicting the velocity field in domain of the problem worked, and this work therefore is of practical significamce.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164