<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

軋制問題的有限單元法解

The Solution of The Finite Element Method on Rolling Problems

  • 摘要: 本文在平面應變條件下,假設軋件為應變硬化的剛塑性體,軋輥為不變形的剛體,軋輥與軋件之間的接觸摩擦條件為粘著,即軋輥與軋件之間無相對滑動。用剛塑性有限單元法計算了平板軋制過程的單位壓力,金屬流動速度和應變、應力分布等,并對接觸弧長、剛塑性交界面、前滑系數和中性角等的確定提出新的看法。
    有限單元法計算程序是以剛塑性廣義變分原理為基礎,采用八節點曲邊四邊形等參單元。根據在四輥軋機上軋制鋁板的實測數據,對計算結果進行驗證。

     

    Abstract: On the condition of plane strain it is assumed that the workpiece is a rigid-plastic material with strain hardening, the roller is a rigid-body,the frictional condition of the contact surface between the roller and the workpiece is no slip i.e. no relative slide between them.We have used the rigid-plastic finite element method to calculate the pressure per unite area,the velocity of metal flow and the stress-strain distribution,etc; and suggested New view on determining the Length of deformed arc, the rigid-plastic boundaries, the coefficient of front slide and the neutral angle.
    The computer programme of the finite element method is based on the general rigid-plastic variational principles. The 8-nodal curved quadrilateral isoparametric element is introduced. The results of the calculation have been compared with the experimental data of aluminium plate rolled on the 4-high mill.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164