<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

利用固體電解質定氧電池測定Fe-Nb熔體中鈮的活度的研究

A Study of the Activity of Niobium in Molten Iron by the Solid Electrolyte Oxygen Cell Technique

  • 摘要: 利用下列組裝的固體電解質定氧電池:
    Mo|Mo,MoO2‖ZrO2(MgO)‖Nb,NbO2|Mo+ZrO2金屬陶瓷,Mo對Fe-Nb熔體中Nb的活度在三個溫度下(1823、1853及1873K)進行研究。在凈化的氬氣氣氛下,將固態NbO2細粉撒布在含鈮鐵液之上,以取得Nb與O的反應迅速達到平衡。有時不加任何固體料,使熔體中形成的脫氧產物自己上浮,此脫氧產物熱力學證明是NbO2。對測定的a0實驗數據進行加工處理,求出下列結果:
    1.脫氧反應的自由能
    Nb+O=NbO2(s); △G°=-89710+28.27T
    2.Nb在鐵液中的溶解自由能
    Nb(s)=Nb%; △G=-32090+7.9T; γ\mathop 1\limits^\rm^\circ 873=1.60
    Nb(l)=Nb%; △G°=-38520+10.24T;γ\mathop 1\limits^\rm^\circ 873=0.92
    3.Nb本身的活度相互作用系數
    \rme_\rmNb^\rmNb = \frac2274\rmT - 1.44
    1873K的\rme_\rmNb^\rmNb = - 0.22
    當(Nb)含量大約低于0.2時,脫氧產物和其他合金元素如Al、Cr、V等相似,形成了復合氧化物如FeO·NbO2。后者的生成自由能估計為:
    Fe(1)+\frac32O2+Nb(s)=FeO·NbO2(s);△G°=-383800+121.95T
    隨著熔體中(Nb)含量的繼續下降,對生成其他脫氧產物的可能性,本文也進行了討論。

     

    Abstract: The activity of Nb in molten iron was studied at three temperatures, 1823, 1853 anp 1873K with the solid electrolyte oxygen cell technique, the following cell assembly being adopted:
    Mo, Ho + ZrO2 Cermet|Mo.MoOt||ZrO2 (MgO)||(Nb), NbO2|Mo To equilibrate the (O) Content of the Nb-containing iron, Pure Solid NbO2 particles were scattered over the surface of the melt under Purified argon atmosphere, and in some cases, the surface of the melt was left bare under the purified argon atmosphere, the oxide, which was ascertained thermodynamically as NbO2, being formed by itself as the deoxidation product. By elaboration with the experimental data of a0 determined, the following results were achieved:
    1. The free energy of the reaction of deoxidation:
    Nb+2O=NbO2(S); ΔG°=-89710 + 28.27T
    2. The free energy of sulution of Nb in iron:
    Nb(s)=(Nb)%; ΔG°=-32090 + 7.9T;γ\mathop 1\limits^\rm^\circ 873=1.60
    Nb(l)=(Nb)%l ΔG°=-38520 + 10. 24T,γ\mathop 1\limits^\rm^\circ 873=0.92
    3. The self activity interaction coefficent of Nb:
    \rme_\rmNb^\rmNb=\frac2274\rmT-1.44
    When the (Nb) content in the iron was less than about 0.2%, similar to the behavoir of other alloying elements such as Al. Cr, V etc, a complex oxide, probably FeO · NbO2, was formed. The free energy of this complex oxide from its elements was estimated to be:
    Fe(1)+\frac32O2+Nb(s)=FeO·NbO2(s);△G°=-383800+121.95T
    The possibility Of the presence of other deoxidation products, as the (Nb) content in the molten Iron was decreased still further, was also discussed.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164