<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

頂、底、復合吹煉轉爐熔池流場及循環流量的試驗研究

  • 摘要: 對頂吹、中心底吹及復合吹三種工藝,在不同的氣體流量條件下,用鋁粉示蹤法研究了熔池內的流譜,用頻閃光照象法測定了渦環中的速度分布。流譜試驗指出:熔池內形成一個封閉的渦環,三者都可當作軸對稱二維流場。由測定結果計算出渦環中心的位置為(Z0)/H=0.57,(2R0)/D=0.83。還計算出不同的頂吹沈量和不同的底吹流量條件下的循環流量,回歸出它們之間的定量關系武為:Qc=0.659Qr+5.175QB-0.051QT2-4.975QB2-0.22QTQB。依此對熔池內的攪拌規律進行了分析。在試驗的參數值范圍內,循環流量與頂吹氣體流量之間的關系為具有一極大值的曲線,循環流量和底吹氣體流量之間的關系為一條逐漸變緩的上升曲線。復合吹煉的循環流量小于單純頂吹和單純底吹時間兩者循環流量的代數和。附加底吹所增加的循環流量隨頂吹量的增加而減小。

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164