<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

低碳鋼控制軋制中的組織與性能

  • 摘要: 本文研究了奧氏體化溫度(軋前的原始奧氏體晶粒大小)、軋制溫度、壓下率及軋后快冷前的停留時間對熱變形奧氏體的再結晶及再結晶奧氏體晶粒大小的影響,確定了軋前奧氏體晶粒尺寸、軋制溫度及軋后快冷前的停留時間與奧氏體再結晶臨界變形量之間的關系,以及原始奧氏體晶粒大小、軋制溫度及壓下率與再結晶后奧氏體晶大小之間的關系。也研究了在950°、900°及850℃軋制時的壓下率與轉變后的鐵素體形態之間的關系,再結晶奧氏體晶粒大小與轉變后的等軸鐵素體晶粒大小的關系。在以上研究的基礎上,研究了4C船板在多道軋制后的低溫沖擊韌性、屈服強度等與控制軋制工藝所決定的軋后鐵素體品粒大小之間的定量關系。根據以上研究的結果,初步得出有關低碳鋼(4C)控制軋制的兩點結論。

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164