<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

高鈦低鋁高溫合金電渣重熔鈦燒損的研究

  • 摘要: 本文研究了GH132和GH136合金電渣重熔過程鈦燒損的某些機理,發現渣中TiO2濃度較高時,(TiO2)是Ti燒損的主要氧化劑。與Ti相平衡的渣中鈦的低價氧化物主要是Ti3O5,決定Ti燒損速率的主要因素是Ti4+在鋼/渣界面層的傳質速度,該傳質速度隨著渣中TiO2濃度的增加而增大。降低Ti3+向渣/氣界面的擴散速度是減少Ti燒損的關鍵環節。實驗研究了CaF2-Al2O3-TiO2渣系中Ti4+在電極/熔渣和金屬熔池/溶渣界面1700±10℃時的傳質系數與渣中TiO2含量之關系;測定了Ti3+向渣/氣界面(溫度為1500℃)的傳質系數為2.2×10-1厘米/移。

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164